top of page

Making Your Own Keyboard

Designing Plates and Cases (Under Construction)

Switch Plates

 

A keyboard has a switch plate that holds the switch plate, and a case that supports the switch plate and houses the PCB/wiring. The switch plate can be made of 1.5mm thick steel or aluminum, or 3mm-5mm acrylic.

​

-Steel/Aluminum Switch Plates (Lasergist is my recommended source)

Pros: Switches and stabilizers will snap in, more rigid and durable, adds more heft to the board.

Cons: more expensive

-Acrylic/Wood  Plates (Ponoko or any laser cutting service near you is my recommended source)

Pros: Cheaper, more readily available, more color options, light weight, some prefer having flexible switch plates

Cons: Scratch easier, not as durable, switches and stabs will have to be glued in (handwiring)

​

Grab your Raw Data from the layout you created using the Keyboard Layout Editor and head to builder.swillkb.com. This is a good tool that will help generate the files needed in order to get your plates and case made.

 

Go to builder.swillkb.com

Copy the “Raw data” from keyboard-layout-editor and paste it into Plate Layout
Switch Type: MX (unless you know you’re getting Alps switches)
Stabilizer Type : “Cherry + Costar”
Case Type: “Sandwich”
Mount Holes: 8 (unless you want more/less), Diameter: 2 mm, Edge Width: 6 mm
Width Padding: 6 mm (Sets the border of the keyboard, 6 mm is a safe bet but you could go more if you want)
Height Padding: 6 mm
Plate Corners: 2 mm (Rounds the corners)
Kerf: Kerf is how much material is removed when the lines are cut by the machine, illustrated here. If you’re using Ponoko to cut the plates out of acrylic (like in this guide), then set this value to 0.15 mm. If you’re cutting the plate out yourself, you should know what to put in that field already, depending on the machine you’re using.
Line Color: “blue” (For some services like Ponoko, line color determines whether the line is going to be cut or engraved)
Then go to CAD Output, and download the SVG files for the top and bottom layer. Here is where you have some options.

 

If you want a metal plate, I would first check Lasergist. You load up your switch plate files and the dimensions are taken care of. The price is very good as far as small order custom material cutting goes. They sometimes do take a more time to get to you, but they are quality steel plates. If you want an acrylic plate or a wood plate, I would first check Ponoko. You will have to sign up for an account (make sure you have the files already prepared because your first product will be $20 dollars off). They will have you download their template sizes and change the thickness of the lines on your print files for them to be printed. 

​

You can stick with a basic faceplate and backplate, and have empty space in the middle. For this you’ll need the top and bottom svg file that you’ve entered the information for. I personally don’t recommend doing this if you’re using 3mm acrylic because it might flex a little, but if you know what you’re doing then go for it.​

Sandwich Case​

​

This will be the simplest case you can make. You will have the switch plate on top, bottom plate on the bottom, and print out multiple layers and stack them together to make the case (they will be held together by standoffs). This will depend on the thickness of material you’re cutting out of. Example: I had the 3mm faceplate and backplate, and three 3mm pieces of acrylic in-between – this leaves 9mm of space to work with. If you’re hand wiring (if you have a PCB then 9mm should be enough) and you’re going to have a large spacebar, you can tuck the microcontroller between switches like this, but if you won’t have room to do that then you’re going to be cutting it extremely close, and might want to consider getting an extra layer of 3mm acrylic or whatever and having 12mm of space. Basically just make sure you have everything planned out, and don’t end up running out of room to stuff the microcontroller. If you’re printing multiple layers, then also download the other two svg files you generated, one with an opening for USB and one without.

 

Editing the .svg file and prepping for cutting

​

To cut out the layers you’ve made, I’ll be explaining how to do it through Ponoko, which doesn’t cut steel thick enough to used for a keyboard, so I’ll be using acrylic (acrylic is also cheaper, so consider that). You can still use the files to cut steel/aluminum, but whatever service you use may have different limits on dimensions of what’s being cut, different prices, etc.

​

Ok, so now download the trial of Adobe Illustrator (or anything that can edit svg files, Inkscape can do the same and is free, but I’ll be talking about Illustrator). Ponoko has three acrylic templates available, the two larger ones being P2 (384mm x 384mm), and P3 (790mm x 384mm). You might be ok with using P2 to fit all of the pieces you need, but P3 is available if you can’t fit all if your plates on P2. Open up the svg files for the four plates, and the ai/svg file for the template. (small, important sidenote: your keyboard is held together with screws on two opposite ends of a spacer. The screws and spacers can be anything reasonable but I’ll be talking about M2 screws (2mm diameter) and Generic brass spacers (3.25mm diameter). You can either have your keyboard screws set up like this, or like this, but make sure you know which you’re going with so you can buy the right spacers and set the screw hole diameters accordingly. If you’re going with 5 or 6 layers then I don’t think it really matters, but if you’re going only two layers with empty space in-between, you’ll need the spacer diameter to be greater than the faceplate hole diameter, so it actually supports the plates)

​

Now, zoom in to each screw hole (with “Z”) select the Measure tool (subsection of the eyedropper tool), and make sure each hole is either 1.95mm or 3.25mm (depending on if you’re going to have a spacer or a screw there). My faceplate and backplate had all 1.95mm holes, and all middle plates had 3.25mm holes, but you may have all 3.25mm holes. You also may want to add extra holes spread through the middle of the plates, to support it so it doesn’t flex if you’re using acrylic (or be aware of where holes are if you’re using a PCB). If the screw holes aren’t exactly those values, use the Selection Tool (V) to select all of the points of the circle, and set its H and W to the right values at the top in the Transform Panel (Note: The screw hole diameters are different from what you put into the builder because the builder corrects for the kerf you also put in, that's why the 2.1mm diameter turns into 1.95mm).


Something else you might want to change is the location of the hole where the USB socket will be, depending on your PCB. This is less important if you’re wiring by hand, since you’re going to be using a USB extender anyway. Now that all of your individual plates are ready to be cut out, select each one, Group them in the right click menu, copy, and paste into the Ponoko template, within the orange rectangle. Paste in the front plate, backplate, and whatever number of middle plates you’re going to be using (I used two middle plates with the usb hole, and one without, for a total of 9mm of space between the frontplate+backplate. Again, you might want to add another middle plate to have a total of 12mm of space – thicker keyboard but plenty of room for the microcontroller and wires. Select everything in the template (Ctrl+A) and set the Stroke to 0.01mm (top left), and make sure you’re following all other template instructions. Finally, save it as an EPS file, make a Ponoko account, go here to choose materials (any color acrylic as long as it’s 3mm thick), and get it made.

 

Things to keep in mind: Acrylic is cheaper, but has a different feel from metal plates because it’s not as rigid. If you like the clack of a keyboard, know that there’ll be less of it since acrylic absorbs more of the impact of the switch bottoming out.

bottom of page